Multi-atlas Segmentation Using Patch-Based Joint Label Fusion with Non-Negative Least Squares Regression

نویسندگان

  • Mattias P. Heinrich
  • Matthias Wilms
  • Heinz Handels
چکیده

Abstract. This work presents a patch-based multi-atlas segmentation approach based on non-negative least squares regression. Our approach finds a weighted linear combination of local image patches that best models the target patch, jointly for all considered atlases. The local coe cients are optimised with the constraint of being positive or zero and serve as weights, of the underlying segmentation patches, for a multiatlas voting. The negative influence of erroneous local registration outcome is shown to be reduced by avoiding negative weights. For challenging abdominal MRI, the segmentation accuracy is significantly improved compared to standard joint least squares regression and independent similarity-based weighting. Our experiments show that restricting weights to be non-negative yields significantly better segmentation results than a sparsity promoting `1 penalty. We present an e cient numerical implementation that rapidly calculates correlation matrices for all overlapping image patches and atlases in few seconds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion

. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

4D Multi-atlas Label Fusion Using Longitudinal Images

Longitudinal reproducibility is an essential concern in automated medical image segmentation, yet has proven to be an elusive objective as manual brain structure tracings have shown more than 10% variability. To improve reproducibility, longitudinal segmentation (4D) approaches have been investigated to reconcile temporal variations with traditional 3D approaches. In the past decade, multi-atla...

متن کامل

Multi-atlas segmentation with augmented features for cardiac MR images

Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods ...

متن کامل

A generative probability model of joint label fusion for multi-atlas based brain segmentation

Automated labeling of anatomical structures in medical images is very important in many neuroscience studies. Recently, patch-based labeling has been widely investigated to alleviate the possible mis-alignment when registering atlases to the target image. However, the weights used for label fusion from the registered atlases are generally computed independently and thus lack the capability of p...

متن کامل

Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation

Patch-based label fusion methods have shown great potential in multi-atlas segmentation. It is crucial for patch-based labeling methods to determine appropriate graphs and corresponding weights to better link patches in the input image with those in atlas images. Currently, two independent steps are performed, i.e., first constructing graphs based on the fixed image neighborhood and then comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015